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In this paper we study an evolving email network model first introduced by Wang and De Wilde, to the
best of our knowledge. The model is analyzed by formulating the network topology as a random process
and studying the dynamics of the process. Our analytical results show a number of steady state properties
about the email traffic between different nodes and the aggregate networking behavior �i.e., degree
distribution, clustering coefficient, average path length, and phase transition�, and also confirm the empirical
results obtained by Wang and De Wilde. We also conducted simulations confirming the analytical results.
Extensive simulations were run to evaluate email traffic behavior at the link and network levels, phase tran-
sition phenomena, and also studying the behavior of email traffic in a hierarchical network. The methods
established here are also applicable to many other practical networks including sensor networks and social
networks.
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I. INTRODUCTION

This paper, which extends �1�, proposes a variation of the
evolving email network model proposed in �2�, whose topol-
ogy evolvement is driven by Poisson traffic. An analytical
analysis is presented to study the network topology evolve-
ment and verify previous empirical work in �2�. Markov
chains and random graphs are used to analyze the model.
These analytical tools are also useful in analyzing a variety
of practical networks from the Internet to social networks
to sensor networks. The analytical results obtained not
only confirm the empirical results established in �2�, but
using embedded Markov chains, many of the email
network parameters are characterized by steady state distri-
butions. These results are useful as well to help understand
the statistical behavior of real email networks observed in
�3,4�.

Email communications have become an indispensable
form of communication in our present information
technology society. Of growing concern is the amount
of “spam” or unwanted emails that the Internet users
receive. Some of these unwanted emails are harmful
and spread electronic viruses by automatically sending
emails to the addresses in the address books �or files contain-
ing email addresses� of infected computers. The viruses
have caused serious damage in the past and measures
are now being taken to combat these viruses. Hence,
it is important to know how email viruses are spread
and then to devise effective strategies to control the
spreading or alleviate the damage. This paper studies the first
issue by looking at a simple model of email networks and
analyzes and observes the behavior of these networks. Early
research based on real email networks �3,4� at universities
show that these networks have small world and scale-free

features.1 Three undirected models: random graph network
model, small world network model, and scale-free network
model are used to study email virus propagation �7�. Our
goal is to study a simple and directed email network model
that can naturally explain the behavior and properties of
email networks. Wang and De Wilde �2� first proposed a
simple evolving email network model and obtained numer-
ous interesting simulation results providing some useful in-
sights into the behavior of email networks. The model that
they presented is difficult to analyze. In this paper, we pro-
pose an evolving email network model in which the Ber-
noulli traffic assumption in Wang and De Wilde’s model is
replaced by a Poisson one. This Poisson assumption allows
us to thoroughly analyze both link and network dynamics for
both transient and steady state cases. The steady state behav-
ior is virtually identical to the behavior observed in models
proposed by �2�. Our analytical results show that when using
embedded Markov chains the steady state behavior of many
of the email network parameters follows a steady state dis-
tribution that can be calculated.

The study of the behavior of email networks and other
large scale networks is a growing research area. The survey
paper �8� is a good reference for complex and/or large scale
networks. In 1959, Erdös and Rènyi introduced random
graph theory �9�, which defines random networks as a set of
nodes connecting to each other with equal probability. These
network models have been successfully applied to analyzing

1A small world network model is introduced by Watts and Stro-
gatz �5�. The small world model features the combination of high
clustering coefficient and small average path length. The scale-free
model is proposed by Barabási and Albert �6�. The degree distribu-
tion of this model follows a power law tail distribution. More dis-
cussion about degree distribution, clustering coefficient, and aver-
age path length will be given in Sec. III.
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various social and physical networks. It was found that the
degree distributions of these networks are Poisson. Beyond
the scope of random graph theory, recently it has been found
that a lot of networks have power law tail degree distribu-
tions. Examples are the world wide web �10,11�; in which a
set of HTML �HyperText Markup Language� documents
�nodes� are connected by HTML links �links�, the actor net-
work in movie industry �5,6�, in which each actor represents
a node and any two actors are connected if they collaborated
in the production of a same movie, and the citation network
in academia �12�, in which published papers are nodes while
citations between papers form links. This power law tail dis-
tribution means that these networks have scale-free features.
Namely, they are robust to random node failures while vul-
nerable to targeted attacks to some hub nodes. Barabási and
Albert �6� explained the scale-free feature as consequences
of two mechanisms: network expansion by adding new
nodes and the new nodes preferring to attach to well-
connected nodes. For many ad hoc networks, whose topol-
ogy is determined by their traffic characteristics, a scale-free
feature is highly desired. However, ad hoc network traffic is
limited by power, geographic distance, bandwidth, protocol
overhead, etc. This scalability issue of ad hoc networks, in-
cluding sensor networks, remains as a challenging open
problem �13�. This paper focuses on modeling and analysis
of email networks while providing a new perspective where
ad hoc networks can also be studied using many of the same
approaches developed here.

The remainder of this paper is organized as follows. An
evolving email network model is formulated in Sec. II in
which we replace the Bernoulli assumption in �2� with a
Poisson one. In Sec. III we use tools from Markov analysis
and random graphs to obtain analytical results of this net-
work. Simulations in Sec. IV confirm our analytical results
and coincide with the behavior observed in �2�. Section V
concludes this paper and discusses further related work and
other applications, including sensor networks.

II. EMAIL NETWORK MODEL

In �2�, two models are proposed to define the number of
emails sent from one node to all other nodes: the equal con-
tact model and the degree-related contact model. In the equal
contact model the outgoing email traffic rate of a node is
constant while in the degree-related contact model it is di-
rectly dependent on the out-degree of the node �number of
links to other nodes�. In the degree-related contact model, a
node with higher out-degree sends more emails to other
nodes, it has more users in its address book, which may lead
to a scale-free network as the network grows. For a fixed
network size, �2� showed that the average number of links
converges to a steady state value. Unfortunately the time-
varying traffic in the degree-related model makes an analysis
of this model difficult. This paper focuses on the equal con-
tact model. An analysis of the time-varying traffic model is a
direction of ongoing research.

For the equal contact model discussed in �2� email traffic
is generated from a binomial distribution. Using this distri-
bution makes it difficult to analyze email network properties.
However, the binomial distribution can be approximated by a
Poisson distribution when the number of trials �degree of
nodes� is large and the Poisson distribution is amenable to
the analysis. In this paper we therefore assume that the
amount of email traffic between two users is a Poisson ran-
dom process. We will see later in the simulation section that
the behavior of the model presented here is very similar to
those presented in �2�.

Assume an email network has N nodes. Each node is as-
signed an integer from 1 to N as its ID. Let N
= �1,2 , . . . ,N� denote the set of nodes in the network. Each
node stores an address book to represent its connection with
all nodes. Let �i , j� denote the ordered node pair of node i
and node j and L= ��i , j� : i , j�N� denote the set of all or-
dered node pairs in the network. The topology of the network
at any time can be described as a directed graph �this graph is
the address link connectivity graph�. Let an N�N random
adjacency matrix C�t�= �Cij�t�� denote the topology of the
network at time instance t. If node j is in the node i’s address
book at time t there exists a link from node i to node j at time
t, i.e., Cij�t�=1; otherwise Cij�t�=0.

Each node is capable of sending emails to all the nodes
including itself. For each pair �i , j�, denote by Kij�t ,s� the
number of emails sent from node i to node j during the time
interval from t to s. Assume that, for all �i , j��L, Kij�0, t�
are mutually independent Poisson processes with intensity
�ij �0, respectively.

Two operations, generation and deletion discussed in �2�,
define the network evolvement. Both operations are taken
periodically. Let Tg and Td denote the lengths of generation
period and deletion period, respectively. At the end of each
generation period �let this time be t+Tg�, each node checks
the number of emails it sent to a certain destination node
during this period. If the amount of traffic is greater than
generation threshold g, the source node shall put the desti-
nation node in its address book; otherwise the network
remains unchanged, i.e., for any �i , j��L,

Cij�t + Tg� = �1, Kij�t,t + Tg� � g

Cij�t� , Kij�t,t + Tg� � g .
�

Similarly, at the end of each deletion period �let this time be
t+Td�, each node checks the number of emails it sent to a
certain destination node during this period. If the amount of
traffic is less than or equal to deletion threshold d, the node
shall remove the destination node from its address book;
otherwise the network remains unchanged, i.e., for any
�i , j��L,

Cij�t + Td� = �Cij�t� , Kij�t,t + Td� � d

0, Kij�t,t + Td� � d .
�

A link from node i to node j is established if node j appears
in node i’s address book.

ZHU et al. PHYSICAL REVIEW E 74, 046109 �2006�

046109-2



For any �i , j��L, the number of emails sent from node i
to node j during a generation period, Kij�t , t+Tg�, is a Pois-
son random variable with parameter �ijTg. Then we define
the generation probability

Pij
g = P�Kij�t,t + Tg� � g� .

Similarly, we define the deletion probability

Pij
d = P�Kij�t,t + Td� � d� .

III. STEADY STATE ANALYSIS

The topology of the network model in Sec. II is described
by a time-varying adjacency matrix. Each element of this
adjacency matrix is a random process. Note that both the
generation operation and deletion operation are dependent on
the same Poisson traffic. By carefully sampling the random
process at discrete times we can define an embedded Markov
chain. We can then analyze the Markov chain to find its
stationary transition probabilities. To simplify the problem,
we first assume that the first generation period and the first
deletion period begin at the same time instance 0. In other
words, generation and deletion operations are synchronized
at the beginning. At the end of this section we give argu-
ments that show our results still remain valid even when this
assumption is dropped. Before presenting our formulation,
we define the following term.

Definition. A random process has cyclic steady state
distribution with period T if limn→� P�nT+ t0�=��t0�
for each t0, where P�t� is the probability mass function of a
random process at time t,��t0� is a probability mass function
depending on t0, and 0� t0�T.

A. Single ordered node pair

First we consider one ordered node pair. Let Tmax and Tmin
be the larger one and the smaller one of generation period
and deletion period, respectively �i.e., Tmax=max�Tg ,Td� and
Tmin=min�Tg ,Td��. We consider two cases.

�i� Case 1: Tmax is a multiple of Tmin.
�ii� Case 2: Tmax /Tmin is a rational number.

The former is a special case of the latter. Because of its
simplicity, we start with the first case.

1. Case 1

For �i , j� being the tag ordered node pair, we have the
following theorem.

Theorem 1. If Tmax is a multiple of Tmin, the event of node
j in node i’s address book has a unique cyclic steady state
distribution with period Tmax.

Proof: Without loss of generality, assume Td�Tg and
let Td=mTg, where m is a positive integer. Also without
loss of generality, we assume that at time instance t=nTd
�n is a nonnegative integer�, the generation operation is
taken right before the deletion operation if both operations
are taken simultaneously. The tag ordered node pair �i , j�
has two states: 0 and 1, i.e., Cij�t�=1 if there is a link from
node i to node j; Cij�t�=0 otherwise. So Cij�nTd�

�n= �0,1 ,2 , . . . �� is a Markov chain. Let sij�n� denote
the state of �i , j�, i.e., sij�n�=Cij�nTd�. Denote the state dis-
tribution by Pij�n�= �Pr�sij�n�=1� Pr�sij�n�=0��� where Pr�A�
is the probability of event A occurring.

For the embedded Markov chain we have the transition
matrix Qij satisfying

Pij�n + 1� = QijPij�n� , �1�

where

Qij

= 	q�sij�n + 1� = 1
sij�n� = 1� q�sij�n + 1� = 1
sij�n� = 0�
q�sij�n + 1� = 0
sij�n� = 1� q�sij�n + 1� = 0
sij�n� = 0� � .

To define these transition probabilities, consider time interval
�nTd , �n+1�Td�. Let Xk be the number of emails sent out
from node i to node j during the kth generation period,
i.e., Kij�nTd+ �k−1�Tg ,nTd+kTg�=Xk�k� �1,2 , . . . ,m��. Re-
lations between time instances and email traffic amounts
are shown in Fig. 1. Note that Xks are independently
identically distributed Poisson random variables with
parameter �ijTg. Let G denote the complement of event

�X1�g ,X2�g , . . . ,Xm�g� �i.e., Ḡ= �X1�g ,X2�g , . . . ,Xm

�g��, and D denote the event of ��k=1
m Xk�d�. When event G

occurs a generation operation is taken if there is no link from
node i to node j; whereas when event D occurs a deletion
operation is taken if there is a link from node i to node j.
Then we have

q�sij�n + 1� = 0
sij�n� = 0�

= Pr�Ḡ � �G � D��

= Pr�Ḡ� + Pr�G � D�

= Pr�Ḡ� + Pr�D� − Pr�Ḡ � D�

= �1 − Pij
g �m + Pij

d − Pr�Ḡ � D� ,

and similarly

q�sij�n + 1� = 1
sij�n� = 0� = 1 − Pij
d − �1 − Pij

g �m + Pr�Ḡ � D� ,

q�sij�n + 1� = 0
sij�n� = 1� = Pij
d ,

q�sij�n + 1� = 1
sij�n� = 1� = 1 − Pij
d .

Since the state space of the Markov chain is finite and every
element of transition matrix Qij is positive, it is a recurrent
Markov chain. Obviously it is also irreducible and aperiodic.
So the Markov chain has a unique steady state distribution
�14� �i,j =limn→�Pij�n� such that

FIG. 1. Illustration of the embedded Markov chain defined in
case 1: Td=mTg. It shows the relations between email traffic
X1 ,X2 , . . . ,Xm and time instances nTd ,nTd+Tg , . . . , �n+1�Td.
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�ij = Qij�ij .

In a deletion period, only the generation operation is taken.
We could study embedded Markov chains at different time
Cij�nTd+kTg�, where k= �1,2 , . . . ,m�, �n= �0,1 ,2 , . . . ��. This
also has a unique steady state distribution

	1 Pij
g

0 1 − Pij
g �k−1

�ij .

So we say that the event of node j in node i’s address book
has a unique cyclic steady state distribution with period Td.�

Remark 1 (Steady state link probabilities). In the above
proof, the upper element of column vector �ij, denoted by
�ij�1� , is the minimal steady state probability that there
exists a link from node i to node j. The maximal steady state
probability, which is the upper element of vector

	1 Pij
g

0 1 − Pij
g �m−1

�ij ,

should occur after the �m−1�th generation period in the
Td-length cycle.

Generally the term Pr�Ḡ�D� is complicated. In the case
of g�d, we have

Pr�Ḡ � D� = Pr�D� = Pij
d .

Before moving forward, let us take a look at a simple ex-
ample.

Example 1. In an email network with ten nodes, consider
two nodes: node 1 and node 2. The traffic from node 1 to
node 2 is Poisson with intensity 0.1 messages per day. Every
10 days node 1 inspects if the number of emails it sent to
node 2 is more than one message. If so, node 2’s address
should be added in node 1’s address book. Every 20 days, if
no message is sent to node 2, node 2’s address should be
deleted from node 1’s address book.

In this case, we have �12=0.1, Tg=10, Td=20, g=1, and
d=0. Hence

P12
g = 1 − e−��12Tg��1 + �12Tg� = 0.26,

P12
d = e−��12Td� = 0.14,

and

Q12 = 	1 − P12
d 1 − �1 − P12

g �2

P12
d �1 − P12

g �2 � = 	0.86 0.46

0.14 0.54
�

Finally we have

�12 = 	0.77

0.23
� .

This means asymptotically the probability that node 2 ap-
pears in node 1’s address book is 0.77 after at the end of
every 20 days and the statistical average number of links

emanating from node 1 is 7.7. Ten days later another possible
generation operation may be taken, then the probability that
node 2 appears in node 1’s address book changes to 0.83 and
the statistical average number of links emanating from node
1 becomes 8.3.

2. Case 2

In this case, Tmax /Tmin is a rational number. Let T be the
least common multiple of the generation period and the
deletion period, i.e., T=lcm�Tg ,Td�=lcm�Tmax ,Tmin�.

Theorem 2. If Tmax /Tmin is a rational number, the event of
node j in node i’s address book has a unique cyclic steady
state distribution with period T.

Proof. Without loss of generality, assume Td�Tg. Let r1

be the greatest integer less than Td /Tg�r1= �Td /Tg�� and r2 be
the smallest integer greater than Td /Tg�r2= �Td /Tg��. Let
r3=T /Td. For an ordered node pair �i , j�, note that Cij�nT� is
a Markov chain. This Markov chain also has two states 0 and
1. Let sij�n� denote the state of the Markov chain at time
instance nT, i.e., sij�n�=Cij�nT�. Let mh be the number of
generation periods in hth �h� �1,2 , . . . ,r3�� length-Td time
interval in the tag interval �nT , �n+1�T�. So mh=r2 if
�h−1�Td� �� f=0

h−1mf�Tg+r2Tg�hTd otherwise mh=r1. Similar
to the proof of Theorem 1, we use random variables X’s and
introduce random variables Y’s to denote the number of
emails sent out from node i to node j during generation pe-
riods and deletion periods, respectively. Let Yh=Kij�nT+ �h
−1�Td ,nT+hTd� and Xh,k=Kij�nT+ �� f=0

h−1mf�Tg+ �k
−1�Tg ,nT+ �� f=0

h−1mf�Tg+kTg�, where k� �1,2 , . . . ,mh�. Let
Gh denote the complement of �Xh,1�g ,Xh,2�g , . . . ,Xh,mh

�g� and Dh= �Yh�d�.
To analyze the embedded Markov chain, we look at each

of the r3 deletion periods. We are interested in Cij�nT+hTd�
for 0�h�r3. Let u�h�=Cij�nT+hTd�, 0�h�r3 and u de-
note the r3+1 binary row vector. Denote by U the set of all
r3+1 binary row vectors. Relations between these definitions
and time instances are shown in Fig. 2. Let Fu denote the
union of all events that cause the transitions denoted by u in
the tag time interval and Eh

u denote the union of all events
that cause transitions denoted by u�h−1:h�, the �h−1�th and
hth elements of u, from time nT+ �h−1�Td to time nT+hTd,
i.e., Fu= ��h=1

r3 Eh
u�. Actually, we have

FIG. 2. Illustration of the embedded Markov chain defined in
case 2: T=r3Td. It shows the relations between email traffic X’s,
Y’s, and time instances.
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Eh
u =

Ḡh � �Gh � Dh� , u�h − 1:h� = 00

Gh � D̄h, u�h − 1:h� = 01

Dh, u�h − 1:h� = 10

D̄h, u�h − 1:h� = 11.
�

Note that Fu satisfies the following.
�i� For any u�U, Fu�	.
�ii� The set �Fu :u�U� partitions the set of all possible

traffic in the tag interval.
Note also that u�0�=sij�n� and u�r3�=sij�n+1�. So we

have transition probability

q�sij�n + 1� = 0
sij�n� = 0� = Pr��u:u�r3�=0,u�0�=0Fu�

= �
u:u�r3�=0,u�0�=0

Pr�Fu� .

Similarly we have transition probabilities

q�sij�n + 1� = 1
sij�n� = 0� = �
u:u�r3�=1,u�0�=0

Pr�Fu� ,

q�sij�n + 1� = 0
sij�n� = 1� = �
u:u�r3�=0,u�0�=1

Pr�Fu� ,

q�sij�n + 1� = 1
sij�n� = 1� = �
u:u�r3�=1,u�0�=1

Pr�Fu� .

Then Eq. �1� is still valid by changing transition matrix Qij.
The Markov chain is also irreducible, recurrent, and aperi-
odic. So it has a unique steady state distribution. Similar

FIG. 3. �Color online� Average number of links of synchronous uniform networks. Both the first generation periods and the deletion
periods start at time 0. The traffic rates between all ordered node pairs are �ij =0.02. Initially for each node, set generation period Tg=14,
deletion period Td=120, generation threshold g=3, and deletion threshold d=1. The average number of links is averaged over 64 simulation
runs. Each plot corresponds to the results by varying Tg, Td, g, and d, respectively.
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arguments can show that the event of node j in node i’s
address book has a unique cyclic steady state distribution
with period T. �

Remark 2 (Dependence of Eh
u). Obviously, we have

Pr�Eh
u�Eh+


u �=Pr�Eh
u�Pr�Eh+


u � �


� �±2, ±3, . . . ��. In gen-
eral, the events of Eh

u and Eh+1
u are dependent so that the

calculation of Qij is more complex. For the case that g�d,
we have

Eh
u = Ḡh, u�h − 1:h� = 00

Gh, u�h − 1:h� = 01

Dh, u�h − 1:h� = 10

D̄h, u�h − 1:h� = 11.
�

Hence Pr�Eh
u�Eh+1

u �=Pr�Eh
u�Pr�Eh+1

u � except when Eh
u=Dh

and Eh+1
u =Gh+1 or Eh+1

u = Ḡh+1 as

Pr�Dh � Gh+1� = Pr�Dh� − Pr�Dh � Ḡh+1� .

B. All ordered node pairs

Now we can extend Theorem 2 to the whole network by
redefining states.

Theorem 3. If Tmax /Tmin is a rational number, the topology
of the whole network has a unique cyclic steady state distri-
bution with period T.

Proof: Using the same assumptions in the proof of
Theorem 2 we denote the state of the whole network by
S�n�= �sij�n� ,1� i , j�N�. To be clear, rewrite S�n� as a N2

binary row vector. Element h� represents the state of the h�th
node pair in the ordered set L as that in the proof of Theorem
2. S�n� has a total of 2N2

states. Denote the state probability
distribution by

FIG. 4. �Color online� Outgoing clustering coefficients of synchronous uniform networks. Both the first generation periods and the
deletion periods start at time 0. The traffic rates between all ordered node pairs are �ij =0.02. Initially for each node, set generation period
Tg=14, deletion period Td=120, generation threshold g=3, and deletion threshold d=1. The outgoing clustering coefficients are averaged
over 64 simulation runs. Each plot corresponds to the results by varying Tg, Td, g, and d, respectively.

ZHU et al. PHYSICAL REVIEW E 74, 046109 �2006�

046109-6



P�n� = �
Pr�S�n� = 1111 ¯ 1111�
Pr�S�n� = 1111 ¯ 1110�
Pr�S�n� = 1111 ¯ 1101�
Pr�S�n� = 1111 ¯ 1100�

]

Pr�S�n� = 0000 ¯ 0000�
� .

Since each ordered node pair has independent email traffic,
we have the following equation:

P�n + 1� = �� �i,j��LQij�P�n� , �2�

where � is the Kronecker product operator.2 Similarly, we
can argue that the Markov chain is irreducible, recurrent, and
aperiodic. Therefore it has a unique steady state distribution
�=limn→�P�n� such that

� = �� �i,j��LQij�� .

Similar arguments show that the topology of the whole
network has a unique cyclic steady state distribution
with period T. �

Remark 3 (Comments about asynchronous cases).
We can also remove an earlier assumption that the first
generation and deletion periods start at the same time. In
this asynchronous case, we still can define embedded
Markov chains at the end of these deletion periods as
above. Obviously these Markov chains still have stationary
transition matrices and are irreducible, recurrent, and aperi-
odic. Then all the above theorems hold though the cyclic
steady state distributions will change.

In addition, assume that each ordered node pair has the
same network traffic rate, i.e., �ij =�. Then in steady state,
the whole network can be viewed as a random directed graph
with connecting probability p�t�, which has period T. There
are three robust measures, degree distribution, clustering co-
efficient, and average path length,3 to describe random undi-
rected networks. For random directed networks, Zhou �17�
extended these definitions to in-degree and/or out-degree dis-

tribution and incoming and/or outgoing clustering coeffi-
cient. From the random graph theory �9�, we have the
following result:

Corollary 1. If Tmax /Tmin is a rational number and each
ordered node pair has same network traffic rate:

�i� both in-degree and out-degree distributions of the
whole network have unique cyclic steady state distributions
with period T;

�ii� both incoming clustering coefficient and outgoing
clustering coefficient of the whole network have unique cy-
clic steady state values with period T.
We conjecture that the average path length of a connected
network has a unique cyclic steady state value with period
T. Simulations in the next section justify this observation.
The following simple example also illustrates these
results.

Example 2. With the same parameter setting for each
ordered node pair as that of example 1, asymptotically
at the end of every twenty days, the in-degree and out-degree
distributions of the network are binomial distributions
with parameter 0.77 and both the incoming and outgoing
clustering coefficients are 0.77 ten days after this time in-
stance, both in-degree and out-degree distributions of the
network are binomial distributions with parameter 0.83 and
both the incoming and outgoing clustering coefficients
are 0.83.

In reality, a network may have a lot of domains. Email
users in the same domain communicate much more than
those in different domains. For instance, consider a hierarchy
network with two traffic levels. The in-domain and out-
domain email traffic has intensity �in and �out, respectively,
with �in��out. The theorems and corollary that we stated in
this section are still valid.

Since each ordered node pair evolves independently,
all the above results still hold even when each ordered
node pair has a different Poisson traffic rate. Also note
that these results can be extended to the case where
each node has different values for the generation period,
deletion period, generation threshold, and deletion
threshold.

IV. SIMULATION

In this section simulations are used to verify the analytical
results obtained in Sec. III. Here we connect our model
to a traditional random graph network model and a small
world network model. We start with uniform networks
where each ordered node pair has the same Poisson traffic
rate and then move to hierarchy networks, in which the
Poisson traffic rate of each ordered node pair depends
on which hierarchy level it falls in. For both kinds of net-
works, we investigate three topology measures of random
networks: degree distribution, clustering coefficient, and av-

2The Kronecker product of matrix Apq= �aij� and matrix Bmn is

A � B = �
a11B a12B ¯ a1qB

a21B a22B ¯ a2qB

] ] � ]

ap1B ap2B ¯ apqB
� .

Please refer to �15,16� for details.
3For any node of a random network, its degree is a random vari-

able. The collective distribution of degrees of all nodes is defined as
the degree distribution of the graph. For any node that has the
neighborhood, the clustering coefficient of this node is the ratio of
the number of edges formed by its neighbors to a number of edges
of a completely connected neighborhood. Clustering coefficient of a
random network is obtained by collectively averaging over all node.
The average path length, also known as the characteristic path
length, is the collective average of the shortest path length between
any node pair. For details, please refer to �6�.
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erage path length. We also examine the phase transition
phenomena.4

Following �2� we consider networks with 1000
�N=1000� nodes. Since, in steady state, different initial
settings give us the same results, we choose a simple random
initial setting as follows. For any �i , j��L, Poisson
email traffic is generated starting at time −1. If the number
of emails sent from node i to node j up to time
0, �given by Kij�−1,0�� is greater than or equal to 1, Cij�0�
=1;
otherwise Cij�0�=0.

A. Synchronous uniform networks

In the synchronous case, both generation and deletion
operations are synchronized to start from time 0. In
other words, the first generation period and the first deletion
period start at time 0. In this subsection, we set parameters
the same as those in �2�. For each ordered node pair, �ij
=0.02; for each node, Tg=14, Td=120, g=3, and d=1. Dur-
ing each run of simulation only one parameter changes while
all other parameters are fixed. In the following we investi-
gate the three topology measures and the phase transition
phenomena.

1. Average number of links

In Sec. III both the in-degree distribution and the out-
degree distribution of the network have cyclic binomial dis-
tribution with period T, the least common multiple of the

4For a large uniform network we examine how a network transi-
tions from being not connected to fully connected as we slowly
increase the Poisson arrival rate �. Related background knowledge
is in�8�.

FIG. 5. �Color online� Average path length of synchronous uniform networks. Both the first generation periods and the deletion periods
start at time 0. The traffic rates between all ordered node pairs are �ij =0.02. Initially for each node, set generation period Tg=14, deletion
period Td=120, generation threshold g=3, and deletion threshold d=1. The average path length is averaged over 64 simulation runs. Each
plot corresponds to the results by varying Tg, Td, g, and d, respectively.
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generation period and the deletion period. Asymptotically,
the binomial distribution converges to the Poisson distribu-
tion, which has its mode at its average. For simplicity, we
investigate the average number of links �or the average
degree�, ���i,j��LCij�t�� /N, instead of the degree distribution.

We ran simulations over 64 runs and averaged the number
of links to get the plots in Fig. 3. Results for Poisson traffic
are very close to the Bernoulli traffic used in �2�. The analy-
sis in Sec. III implies that the average number of links
reaches cyclic steady state values. It is confirmed by the plots
in Fig. 3. Then we investigated the effect of changing the
generation threshold g. Regardless of what the parameters
are, the average number of links has cyclic steady state val-
ues with period T=840, the least common multiple of Tg and
Td. The smaller the generation threshold, the larger the
steady state values.

With the setting of �ij =0.02 ��i , j��L�, Tg=14, Td=120,
g=3, and d=1, by applying the analytical method developed

in the above section, we have the generation probability
given by

Pij
g = 1 − e−�ijTg�1 + �ijTg +

��ijTg�2

2!
+

��ijTg�3

3!
�

= 1 − e−0.28�1 + 0.28 +
0.282

2!
+

0.283

3!
�

= 0.0002,

and the deletion probability given by

Pij
d = e−�ijTd�1 + �ijTd� = e−2.4�1 + 2.4� = 0.31.

We also have that

FIG. 6. �Color online� Phase transition phenomena of synchronous uniform networks �probability of having a connected network vs
traffic rate�. Both the first generation periods and the deletion periods start at time 0. The traffic rates between all ordered node pairs are
�ij =0.02. Initially for each node, set generation period Tg=14, deletion period Td=120, generation threshold g=3, and deletion threshold
d=1. Average and standard deviation of the probabilities are obtained over 20 simulation runs and each run has 1680 steady state networks.
Each plot corresponds to the results by varying Tg, Td, g, and d, respectively.
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Pr�Dh � Ḡh+1�

= Pr�Yh � d,Xh+1,1 � g,Xh+1,2 � g, . . . ,Xh+1,mh+1
� g�

= Pr�Yh � 1,Xh+1,1 � 3,Xh+1,2 � 3, . . . ,Xh+1,mh+1
� 3�

= Pr�Yh = 0,Xh+1,1b � 3,Xh+1,2 � 3, . . . ,Xh+1,mh+1
� 3�

+ Pr�Yh − Xh+1,1a = 1,Xh+1,1a = 0,Xh+1,1b � 3,Xh+1,2

� 3, . . . ,Xh+1,mh+1
� 3� + Pr�Yh − Xh+1,1a = 0,Xh+1,1a

= 1,Xh+1,1b � 2,Xh+1,2 � 3, . . . ,Xh+1,mh+1
� 3� ,

where Xh+1,1a and Xh+1,1b are the fractions of Xh+1,1
contributing to Yh and Yh+1, respectively. Then
we get

Qij = 	0.0796 0.00536

0.920 0.995
� .

Hence, we obtain the steady state distribution �ij

= �0.00578 0.994��. This shows that the pair is connected
with probability 0.005 78 at the end of every 840 time units.
So the average number of links of the 1000-node network
goes to 0.00578�1000=5.78 at those time instances. This is
confirmed by the middle curve in Fig. 3�a�. Similar trends
are observed by changing deletion threshold d, generation
period Tg, and deletion period Td individually �refer to the
plots in Fig. 3�.

FIG. 7. �Color online� Phase transition phenomena of synchronous uniform networks �probability of having a connected network vs
average connecting probability�. The traffic rates between all ordered node pairs are �ij =0.02. Initially for each node, set generation period
Tg=14, deletion period Td=120, generation threshold g=3, and deletion threshold d=1. Average and standard deviation of the probabilities
are obtained over 20 simulation runs and each run has 1680 steady state networks. Each plot corresponds to the results by varying Tg, Td,
g, and d, respectively.
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2. Clustering coefficients

As we pointed out in Sec. III, both the incoming
and outgoing clustering coefficients of the network are
periodic with period T, the least common multiple of the
generation and deletion periods. As space is limited, only the
simulation results of outgoing clustering coefficients are

shown here. By taking the average over 64 runs, we obtain
the plots in Fig. 4. These plots confirm the analytical results
in Sec. III.

In addition, we noted that there is some quantitative dif-
ference between the results in Fig. 4 and those in �2�. This is
because that we use different definitions of clustering coef-
ficients. Instead of the conventional clustering coefficients
used in �2�, the incoming and outgoing clustering coefficient-

FIG. 8. �Color online� Average number of links, outgoing clus-
tering coefficient, and average path length of asynchronous uniform
networks. All first generation periods start at time 1 while all first
deletion periods start at time 0. The traffic rates between all ordered
node pairs are �ij =0.02. Initially for each node, set generation pe-
riod Tg=14, deletion period Td=120, generation threshold g=3, and
deletion threshold d=1. The results are averaged over 64 simulation
runs. Each curve in each plot corresponds to different values of Tg.

FIG. 9. �Color online� Average number of links, outgoing clus-
tering coefficient, and average path length of synchronous hierarchy
networks. Both the first generation periods and the deletion periods
start at time 0. The traffic rates between nodes in the same �differ-
ent� domains are �in=0.2 ��out=0.02�. Initially for each node, set
generation period Tg=14, deletion period Td=120, generation
threshold g=3, and deletion threshold d=1. The results are aver-
aged over 64 simulation runs. Each curve in each plot corresponds
to different values of Tg.
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sare used to obtain our results as they are defined for random
directed graphs like those of email networks while the con-
ventional clustering coefficients are defined for random
undirected graphs.

3. Average path length

We are not aware of any closed form results of the aver-
age path length of a random graph. However, we conjecture
that as long as the network is connected, the average path
length of the network is also periodic with period T, the least
common multiple of the generation and deletion periods.
Simulations are averaged over 64 runs and are presented in
Fig. 5 demonstrating the cyclic steady state behavior. In this
simulation, all paths are directed and both infinite paths and
self-loops are excluded from averaging. We note that two out
of three curves in each plot have simulations with infinite
paths.

4. Phase transition

The email network evolvement is driven by email traffic.
Here we investigate the effect of varying the traffic rate. A
network is connected if and only if there is a direct path for
each ordered node pair. We inspect the evolvement of the
1000-node network from time 2001 to time 3680 in 20 simu-
lation runs. In each run, the probability of having a con-
nected network is approximated by the fraction of the 1680
= �3680−2000� networks that is connected. We take averages
and standard deviations over 20 runs to obtain the plots in
Fig. 6. As expected, a phase transition does occur. For in-
stance, for the setting of Tg=14, Td=120, g=3, and d=1, the
network is unlikely to be connected if the traffic rate is less
than 0.0208 while the network will likely be connected if the
traffic rate is larger than this threshold value. The plot in Fig.
6�c� shows that the smaller the generation threshold, the
smaller the value of � needed for a phase transition. Phase
transitions are also observed for other different parameter
values as shown in the other plots. To make a connection
with the random graph theory, we also plot the relationship
between probability of having a connected network and the
average connecting probability in Fig. 7. In each plot, the
average connecting probabilities are averaged over 20 runs,
each from time 2001 to time 3680. We observed that all three
curves overlap in each plot and the traffic rate threshold of
each curve corresponds to the same average connecting prob-
ability of 0.0079. In �9�, it was stated that the connecting
probability threshold of a random undirected graph having N
nodes is ln�N� / �N−1� if N goes to infinity. Substituting
N=1000, we have the approximate threshold 0.0069. Our
observation is consistent with this statement though we are
not aware of any similar analytical results for random
directed graphs.

B. Asynchronous uniform networks

In addition, we use simulations to verify our claims in
Sec. III that all these results hold under the asynchronous
assumption. We use same simulation setting as that in Sec.
IV A except that the first generation periods and the deletion

periods start at time 1 and time 0, respectively. Shown in Fig.
8 are the corresponding results of the average number of
links, outgoing clustering coefficients, the and average path
length. Three curves in each plot have different generation
periods 7, 4, and 21, respectively. These plots show the simi-
lar cyclic patterns observed in Sec. IV A. Similar cyclic pat-
terns are observed when the first generation periods start at
any time other than 0.

C. Hierarchy networks

In real life, email traffic rates between any two users vary
depending on many factors. To mimic this scenario, we con-
sider a simple two-level hierarchy network. We split the
whole network into 10 domains, each containing 100 nodes.
Let �out=0.02 and �in=0.2 while keeping other settings the
same as above. Averaging over 64 runs, plots in Fig. 9 are
obtained. The cyclic properties, of the average number of
links, clustering coefficients, and average path lengths are
still observed. Each node connects to nodes in the same do-
main with high probability while connecting to nodes in
other domains with much lower probability. In this setting
we observed similar cyclic pattern behavior. Consider the
setting in Fig. 9 with Tg=14. In the steady state, it has an
average number of links around 105.3, outgoing clustering
coefficient 0.9, and average path length 2.15. Whereas the
corresponding random directed graphs with the same average
number of links has an outgoing clustering coefficient 0.105
and average path length 1.89. This network shows significant
higher clustering coefficients and similar average path length
comparing to random directed graphs with the same average
number of links. That is the small world phenomenon
pointed out in Table 1 of �5�. This is consistent with the
definition of the clustering coefficient. It also naturally ex-
plains the small world feature of the real email network ob-
served in �3�.

In summary, the simulations conducted for uniform
and hierarchy networks both confirm the analytical results
derived in Sec. III. In addition, an example of a hierarchy
network also shows the small world feature as observed
in �3�.

V. SUMMARY AND FURTHER DIRECTIONS

In this paper we proposed a modified email network
model, replacing the Bernoulli traffic assumption in �2�
with a Poisson assumption. The mutual independence of
the Poisson traffic allows us to analytically study the steady
state distribution of the model. Assuming that the ratio of
the generation period to deletion period is rational we use
tools from Markov chains and random graphs to show
that the network has a unique cyclic steady state distribution
with a period that is the least common multiple of the
generation period and the deletion period. When the traffic
rates between any two nodes are the same, the network
can be viewed as a random directed graph that has a cyclic
steady state distribution and has properties of both traditional
random graph models and small world networks. Simulation
results confirmed the analytical results of the random di-
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rected graph in terms of the average number of links and
clustering coefficients. Plots of average path lengths and
phase transition phenomena are also consistent with the
random graph networks. We also attempted to mimic real
email networks with a hierarchy network. This hierarchy
model explains the small world feature of real email
networks.

There are many further directions for this research. We
would like to consider other networks such as sensor and
social networks where the Poisson traffic rate is time-
varying. In sensor networks the traffic intensity would also

be dependent on distance between nodes and power used to
transmit messages.
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